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INVESTIGATION OF A I R  DAMPING 

OF CIRCULAR AND RECTANGULAR PLATES, 

A CYLINDER, AND A SPHERE 

By David G. Stephens and Maurice A. Scavullo 
Langley Research Center 

An investigation w a s  conducted t o  determine the  mechanism of a i r  damping 
exhibited by r ig id  bodies of different  shapes osc i l la t ing  i n  a pressure environ- 
ment. Circular and rectangular plates, as w e l l  as a sphere and cylinder, were 
attached t o  cantilever springs and the  f r ee  decay of an induced osc i l l a t ion  was 
measured at pressure leve ls  from atmospheric t o  4 x 10-2 t o r r .  D a t a  are pre- 
sented t o  show t h e  e f fec t  of pressure, vibratory amplitude, frequency, shape, 
and surface area on the  a i r  damping of the  models. Results indicate tha t  the 
magnitude of the  a i r  damping may great ly  exceed the  s t ruc tura l  damping of t he  
system. The a i r  damping associated with the  plates  i s  d i r ec t ly  proportional t o  
t h e  pressure and amplitude and i s  indicative of diss ipat ive loads proportional 
t o  the  dynamic pressure. F’urthermore, the  p la te  damping w a s  found t o  be inde- 
pendent of shape and i s  a nonlinear function of t he  surface area.  The sphere 
and cylinder exhibit  viscous damping character is t ics  which are  i n  good agree- 
ment with available theory. 

INTRODUCTION 

The vibratory response of a mechanical system i s  highly dependent upon the  
t o t a l  damping. I n  most s i tuat ions t h i s  damping resu l t s  from the  act ion of 
several  dissimilar d i ss ipa t ive  mechanisms, one or more of which may be a func- 
t i on  of t he  operating environment. Some of t h e  more common sources of energy 
diss ipat ion include in t e rna l  hysteresis  ( r e f .  l), in te r face  or j o in t  f r i c t i o n  
(ref.  2), and external or a i r  damping. The air  damping i s  dependent upon the  
magnitude of t he  pressure environment and, therefore, deserves par t icu lar  atten- 
t i o n  i n  studying t h e  response of systems designed t o  operate throughout a wide 
range of pressure o r  density. If, f o r  example, t he  vibration t e s t s  of a space 
vehicle are conducted under atmospheric pressure conditions, t he  damping l eve l  
and consequently t h e  response will be somewhat d i f fe ren t  than i n  the  actual  
operating environment which involves reduced pressures. Thus the  interpreta- 
t i o n  and extrapolation of t he  r e su l t s  of such tes ts  must include t h e  e f fec ts  of 
t h e  pressure environment. 



An object moving i n  a f l u i d  such as  a i r  may lose  energy t o  the  surrounding 
medium as a r e su l t  of one or more r e s i s t i ve  e f fec ts .  
from viscous laminar boundary-layer f r ic t ion ,  sound radiation, and vortex for-  
mation and shedding. However, the  r e l a t ive  importance of each of these phenom- 
ena on the  damping of a vibrat ing body i s  not known. Results of previous inves- 
t iga t ions  a re  l imited t o  the  e f f ec t s  of a s ingle  loss  phenomenon on the damping 
of specif ic  objects.  For example, t heo re t i ca l  s tudies  of the  viscous damping 
forces experienced by a sphere and cylinder o sc i l l a t ing  i n  a f l u i d  are  discussed 
by Lamb ( r e f .  3 )  and by Stokes ( r e f .  4), respectively. When these objects a r e  
undergoing re la t ive ly  low frequency osci l la t ions,  theory predicts  t h a t  they w i l l  
experience forces proportional t o  the  velocity and the  square root of the f l u i d  
density. These predictions were examined experimentally i n  reference 5 i n  which 
a cylinder was swung as  a pendulum about one end and l imited damping measure- 
ments taken at  several  pressure leve ls .  For the  frequency examined (0.7 cps), 
good agreement w a s  found with the  theory. The damping of a "two-dimensional" 
p l a t e  resul t ing from sound radiation i s  discussed i n  references 6 and 7. 
r i g id  p l a t e  o sc i l l a t ing  such t h a t  the  f l u i d  cannot pass over the  edges i s  
theore t ica l ly  shown t o  experience damping forces d i r e c t l y  proportional t o  the 
density, velocity, and the  square of the  area although no experimental v e r i f i -  
cation i s  indicated. A case i n  which vortex e f f ec t s  may have been predominant 
i s  discussed i n  reference 8. The air  damping force experienced by a s m a l l  
cant i lever  beam i s  shown t o  be proportional t o  the  square of the vibratory 
velocity.  

The diss ipat ion may r e su l t  

A 

The purpose of t h i s  paper i s  t o  present the  r e s u l t s  of an investigation of 
the  charac te r i s t ics  of t he  a i r  damping exhibited by r i g i d  c i rcu lar  and rectan- 
gular plates,  a sphere, and a cylinder o sc i l l a t ing  i n  a pressure environment 
varying from atmospheric t o  4 x 10-2 t o r r .  The e f f ec t s  of area, shape, vibra- 
tory amplitude, exci ta t ion frequency, and pressure a re  examined. 

SYMBOLS 

A area of a panel, sq f t  

a radius of sphere, cylinder, or disk, f t  

2 
b veloci ty  squared damping coefficient,  lb-sec sq ft  

lb-sec 
f t  

C viscous damping coefficient,  

E energy of o sc i l l a t ing  system, lb- f t  

aE energy diss ipated per cycle, l b - f t  

frequency of osci l la t ion,  f 
cycles 
sec 

2 



k 

2 

m 

P 

t 

U 

W 

X 

Y 

2 slope, f t  (see f i g .  8) 

length of p l a t e  or cylinder, f t  

vibratory mass, lb- see2 
f t  

pressure of chamber, t o r r  

thickness of material, f t  

vibratory velocity, f t / s e c  

width of plate,  f t  

damping force, l b  

vibratory amplitude, f t  

6 logarithmic decrement, 1 l o g  YO - 
Yn 

P 
lb-secz f l u i d  density, 

f t 4  

kinematic viscosi ty ,  ft2 - v sec 

radians 
sec cu c i rcu lar  frequency of osc i l la t ions ,  

Subscripts: 

a air 

e external  

i in t e rna l  

3 j o in t  

n nth cycle of vibration 

0 i n i t i a l  cycle of vibration 

t beam t i p  

3 



X extraneous damping 

1,2 designates cycle 

max maximum 

Dots over symbols denote derivatives with respect t o  time. 

APPARATlTS AND TEST PROCEDURE 

Vacuum Equipment 

The vacuum system used i n  t h i s  investigation i s  shown schematically i n  
f igure 1. 
30 inches high which was sealed t o  a 6-inch s t e e l  spacer. The s t e e l  spacer 
provided access ports  ( f o r  e lectronic  leads and vacuum l i n e s )  from the  side 
rather  than from the  bottom of the  chamber as i n  a conventional b e l l  jar system. 
The spacer was i n  turn  mounted on a s t e e l  base plate; and the  system was 
anchored t o  a massive s t e e l  and concrete block t o  eliminate the  transmission 
of vibratory energy from the  apparatus t o  the  adjoining s t ructure .  A ?-cubic- 
foot-per-minute mechanical pump was used t o  obtain the  desired pressure leve ls  
between the  l i m i t s  of 1 atmosphere and 4 x 10-2 t o r r .  
between the  pump and the chamber reduced the  transmission of pump vibrations t o  
the  system. 

The chamber consisted of a g lass  b e l l  jar 18 inches i n  diameter and 

A f lex ib le  coupling 

Vibration Equipment 

The equipment used t o  study the damping of the  various models within the  
vacuum chamber i s  shown schematically i n  f igure  2. 
frequency, one of two cantilever beams w a s  employed t o  support the  models and 

Depending upon the  desired 

provide the  osc i l la t ion .  

thicknesses of 1/8 and 3/8 inch and were tuned t o  frequencies of 3.8 and 

The beams, 19 inches long and 1/2 inch wide, had 4 

Flex coupling 1 

Figure 1.- Schematic of vacuum system. 
Figure 2.- Test apparatus and 

instrumentation. 

4 



21.2 cps, respectively, by attaching a s m a l l  mass t o  the  beam t i p .  Each beam, 
machined from a single piece of s ta in less  s tee l ,  had a re la t ive ly  large foot 
f o r  mounting the  assembly t o  the  base p la te  and a T-section at  the  t i p  f o r  
attaching the  models. 
mental vibratory mode of the cantilever beam. 
moved forward and imparted a s t a t i c  deflection t o  the  beam. 
the  slug was quickly retracted by the spring and the  f r e e  decay of t he  model- 
beam system w a s  studied. 

A spring-loaded solenoid was used t o  exci te  the  funda- 
When energized t h e  solenoid slug 

Upon de-energizing, 

3 1 
4 2 I n  addition t o  these beams, an aluminum beam 25- inches x 2 inches x - inch 

was used t o  study t h e  damping charac te r i s t ics  of three large p la tes  at  a f re -  
quency of 3.8 cps. Since t h i s  study w a s  conducted under atmospheric pressure 
conditions, t h e  beam was deflected and released manually. 

Instrumentation 

The damped osc i l la t ions  of t he  model-beam system were monitored by means 
The output of t h i s  gage of a s t r a i n  gage attached near the root of t he  beam. 

w a s  amplified and fed in to  an electronic  dampometer which measured the  f r e -  
quency and logarithmic decrement of the  osc i l la t ion .  

A Bourdon gage and an ion gage were used t o  measure the  pressure i n  the  
b e l l  jar. The Bourdon gage w a s  used from a pressure of 1 atmosphere t o  1 t o r r  
and the  ion gage was used from 1 t o r r  t o  the  lowest a t ta inable  pressure i n  the  
system ( 4  x 10-2 t o r r ) .  

Models 

The damping was studied f o r  t h e  models shown and described i n  t ab le  I. 
The p la tes  with surface areas of 15, 30, and 45 square inches and the  sphere 
and cylinder, each having a projected surface area of 30 square inches, were 
used f o r  most of the  t e s t s .  These models were selected t o  examine the  e f fec ts  
of shape and area on t h e  a i r  damping within the  vacuum system. 
p la tes  having surface areas between 12 and 39 square inches were used i n  l i m -  
i t e d  t e s t s  t o  b e t t e r  define the  damping-area relationship.  
tangular plates,  having surface areas of 93.8, 152, and 240 square inches, were 
studied a t  atmospheric conditions t o  invest igate  the  poss ib i l i t y  of applying 
the  r e su l t s  obtained f o r  the  s m a l l  models t o  la rger  systems. The materials, 
from which the  models were constructed, a re  given i n  t ab le  I and were chosen t o  
maintain approximately t h e  same weight f o r  all models used i n  a par t icu lar  t e s t .  
All panels were machined with square edges. 

The rectangular 

The remaining rec- 
' 

Test Procedure 

The damping charac te r i s t ics  of the beams alone, tuned t o  3.8 o r  21.2 cps 
by the  addition of concentrated masses t o  the  t i p ,  were studied i n i t i a l l y .  The 
selected model w a s  then securely attached t o  the  t i p  of the beam and damping of 
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t h e  assembled system, tuned i n  a similar manner t o  a frequency of e i the r  3.8 o r  
21.2 cps, was measured. 
t he  vacuum chamber w a s  essent ia l ly  the same f o r  each case. The chamber w a s  
pumped down t o  the  desired pressure l eve l  and f o r  a l l  b u t , t h e  lowest pressure 
l e v e l  (4 x 10-2 t o r r )  the pump was stopped while the  t e s t  points were taken. 
The beam was deflected by means of the  solenoid and released. When the  ampli- 
tude of t he  ensuing osc i l l a t ion  reached a pre-selected value, the  output of the 
s t r a i n  gage t r iggered the  dampometer which measured the decay of t he  osc i l la -  
t i o n  u n t i l  the  amplitude reached 7/10 of the value f o r  t he  i n i t i a l  reading. 
The damping i n  terms of the  log decrement was then calculated from 

The basic  procedure f o r  measuring t h i s  damping within 

of the  system was found t o  be most expedient f o r  measuring the damping and 
i so la t ing  the  e f f ec t s  of t h e  variables.  The decay of the  osc i l l a t ion  was ana- 
lyzed over selected portions of the  envelope and specified i n  terms of logarith- 
mic decrement 6. For purposes of t h i s  investigation, t he  decrement i s  physi- 

4 

1 yo 1 10 6 = - log - = - log - 7 Yn n n 

where n was the  number of cycles recorded between these amplitude l i m i t s .  I n  
a l l  cases the  i n i t i a l  def lect ion was of suf f ic ien t  amplitude t o  allow any 
undesirable t rans ien ts  t o  decay before a t e s t  point was taken. 

The decrement was measured a t  various posit ions along the  envelope t o  
determine the  dependency, i f  any, of t he  damping on the  amplitude. The ampli- 
tude associated with a t e s t  point was determined i n  a separate t e s t  In  which 
the  dynamic def lect ion of the system was measured at  the  selected output levels .  
The deflection, at  various posit ions along the  beam and model, was determined 
by placing a s tylus  a t  the  desired posit ion and measuring the resul t ing t race .  
For the  amplitude range considered, the  normalized mode shape of the  tuned beam 
was found t o  be independent of amplitude and the  same f o r  each assembly at  a 
given frequency. 

I n  l imited t e s t s  conducted t o  examine extrapolation techniques, panels of 
considerably la rger  area were examined f o r  several  amplitudes a t  atmospheric 
pressure only, as  s ize  precluded in s t a l l a t ion  i n  the  vacuum system. 
cedure w a s  essent ia l ly  the  same. The damping of t he  beam, tuned t o  the  f r e -  
quency of t he  beam panel assembly (3.8 cps), was studied and then the t o t a l  
damping of t he  beam-panel system was examined. 

The pro- 

ANALYSIS 

a = -  AI3 
2E 

I 

I 



as i s  discussed i n  reference 9. Two character is t ics  of equation (1) should be 
noted. F i r s t ,  t h e  relationship i s  applicable for analyzing or interpret ing any 
damped osc i l la t ion  regardless of the type of decay (viscous, velocity squared, 
and so for th) ;  t ha t  is, no assumption i s  m a d e  as t o  the  shape of the  envelope. 
This e f fec t  can be seen by considering a hypothetical case i n  which an arbi-  
trary velocity time his tory i s  available. Application of equation (1) yields  

where AE i s  the  change i n  k ine t i c  energy between successive peaks and E 
represents t h e  average of peak energy leve ls  of t he  system, 
t h e  system, and umax i s  the  m a x i m  velocity. Equation (2)  reduces t o  

m i s  the  m a s s  of 

A?3 
2E 

= 2  ( 3 )  

%ax, 1 
%ax, 2 

This relationship i s  the  f i rs t  term i n  the  ser ies  expansion of log 

A?3 which i s  by def in i t ion  the  log decrement. The e r ror  i n  assuming t h a t  6 = - 2E 
i s  t h a t  involved i n  dropping the  higher ordered terms of t h e  se r i e s  which a re  
usually very s m a l l .  
various sources of damping. For example, i f  t he  energy loss  i s  a t t r ibu ted  t o  
t h e  combination of in te rna l  dissipation, jo in t  losses, and external losses, 
then the  decrement can be wri t ten as 

The second point t o  be noted i s  the  additive nature of t he  

mi + m .  + m e  m 
2E 2E 

6 = - =  (4) 

where AEi represents the  in te rna l  losses; mj, the  jo in t  losses; and m e ,  
t h e  external losses.  
are known, these losses  can be subtracted from the  t o t a l  measured decrement t o  
y ie ld  a value f o r  t he  remaining energy dissipation. 

Thus, i f  t h e  losses a t t r ibu ted  t o  one or more sources 

For the  configurations under study, t he  t o t a l  decrement w a s  measured 
throughout a wide range of variables.  The decrement w a s  writ ten as 

+ma 6 =  
2E ( 5 )  

7 



where aEX i s  the  t o t a l  of a l l  t h e  extraneous damping of t he  beam system such 
as t h e  in te rna l  hysteresis  of t he  beam, diss ipat ion at t h e  beam support in te r -  
face, and so for th .  The value of LIEx w a s  accurately determined p r io r  t o  
t e s t ing  a par t icu lar  configuration by tuning t h e  beam alone t o  the  desired f r e -  
quency and measuring the  decrement. 
assembled system w a s  i solated and a t t r ibu ted  t o  t h e  air  resistance of t h e  
models and can be writ ten as 

The additional damping measured f o r  t h e  

Once the  a i r  damping of t h e  models w a s  isolated,  examination of t he  e f fec ts  
o f  each of the  variables (pressure or density, amplitude, frequency, area, and 
shape) on the  decrement o r  more spec i f ica l ly  the  energy loss  per cycle 
remained. 
diss ipat ive force or 

AE 
I n  t h i s  case t h e  loss  per cycle i s  equal t o  the  work done by the  

If, f o r  example, t h e  forces a re  viscous o r  d i r ec t ly  proportional but opposed t o  
velocity as discussed i n  reference 8, the  energy loss would be 

where c may be a function of the  density, area, and so  forth,  but independent 
of velocity $. 
velocity i s  assumed t o  be 

Since t h e  motion of t he  models i s  essent ia l ly  harmonic, t he  

y = you cos cut ( 9 )  

f o r  t he  case of low damping. Hence 

m = S,B” cyo 2 LU 2 cos 2 c u t  d t  

which when integrated gives 

The corresponding t o t a l  energy o r  E i s  simply 

8 



and hence 

where m i s  the  osc i l la tory  m a s s ,  and cu i s  the  circular  frequency. Thus i n  
t h e  viscous case the  decrement i s  independent of amplitude but i s  a function of 
frequency . 

If the  damping i s  proportional t o  the  velocity squared, a s i m i l a r  calcu- 
l a t i o n  i n  which 

w i l l  y ie ld  a decrement 

which i s  a l i nea r  function of displacement and independent of frequency f o r  a 
par t icu lar  system. 

When the  data were analyzed and presented, the  e f fec ts  of pressure and 
amplitude were isolated t o  determine, f o r  a par t icular  system, whether t he  
damping w a s  viscous, velocity squared, or of some intermediate form. The data  
were then presented i n  forms suggested by e i ther  equation (13) or (13) t o  
determine the  relationships between pressure, area, shape, frequency, and 
damping. 

I n  the  case of t he  sphere or cylinder, equations a re  available f o r  com- 
parison of t he  experimental resu l t s  with theory. The problem of a sphere per- 
forming pendulum osc i l la t ions  of s m a l l  amplitude i n  an incompressible i n f i n i t e  
m a s s  of viscous f l u i d  has been t rea ted  by Lamb and Stokes, references 3 and 4, 
respectively. The derivation of the resul tant  force acting on the  spherical  
surface yields a force component which i s  l inear ly  proportional t o  and i n  oppo- 
s i t i o n  t o  the  velocity as follows: 

where 

X 

P 

a 

cu 

damping force 

f lu id  density 

radius of sphere 

c i rcu lar  frequency of osc i l la t ions  

9 



Y kinematic viscosi ty  

U veloci ty  

U s i n g  

where 

C damping coefficient 

m osc i l la tory  m a s s  

Hence the logarithmic decrement i s  

m 

The viscous damping force on a cylinder with a high length-radius r a t i o  
vibrating r ec t i l i nea r ly  normal t o  i t s  length at  s m a l l  amplitudes has been cal- 
culated by Stokes. (See re f .  4 . )  The damping force i s  given as 

where a and 2 a re  the radius and length of the  
the  other symbols a re  as previously defined. 

Again se t t ing  

yields  

PRESENTATION AND DISCUSSION OF 

The primary objectiva of the t e s t  program w a s  

(18) 

cylinder, respectively, and 

RESULTS 

the i so la t ion  and examina- 
t i o n  of the  e f f ec t  of density on the  air  damping of the two- and three- 
dimensional shapes. This objective w a s  accomplished by examining the 

10 



difference i n  magnitude of t h e  t o t a l  
system damping and the  beam damping 
measured over a wide range of pres- 
sures. A t  each pressure level,  the  
damping w a s  measured f o r  several  
amplitudes of vibration so  the  
e f fec t  of amplitude could a l so  be 
isolated and studied. By comparing 
the  data  from each of the  systems, 
t he  e f fec ts  of frequency, shape, and 
area become evident. The relation- 
ships established by these data  were 
compared with the  measured damping 
of panels of much la rger  area t o  
examine the  va l id i ty  of extrapola- 
t ion.  The data which follow exem- 
p l i f y  these points. 

Tip deflection, in. ,0020- 

0015L , 
I I I I 
0 200 400 600 

Presswe. torr 

Figure 3 . -  Variation of beam damping 
pressure. f = 3.8 cps. 

- 
803 

with 

Beam Damping 

The damping associated w i t h  t he  fundamental mode of osc i l la t ion  of the  
cantilever beam, tuned t o  3.8 cycles per second, i s  presented i n  figure 3 .  
These data served as a t a r e  f o r  obtaining the a i r  damping of t he  low-frequency 
assemblies and s i m i l a r  r e su l t s  f o r  t he  beam tuned t o  21.2 cycles per second were 
used i n  the  high-frequency cases. The damping factors,  i n  terms of the  loga- 
rithmic decrement 6, are  shown as a function of the  pressure f o r  several  d i f -  
ferent  t i p  amplitudes (note suppressed zero). I n  t h i s  case, as well as those 
t o  follow, the data points represent an average of f ive  or  more measured values. 
The t o t a l  damping associated with the  beam exhibits a near-linear dependency on 
pressure i n  the  range between atmospheric pressure and 100 to r r .  Below 100 t o r r  
t he  damping factors  deviate f r o m  t h i s  l i nea r  pressure relationship and approach 
values a t  4 x 10-2 t o r r  which a re  most probably due t o  the  in te rna l  hysteresis 
and jo in t  f r i c t ion .  No attempt w a s  made t o  i so l a t e  these par t icu lar  effects  
as the  resu l t s  served only as a t a r e .  A t  a l l  pressures the  magnitude of the  
damping i s  proportional t o  the  t i p  
amplitude. The curve as presented 
w a s  rerun periodically and w a s  
found t o  be highly repeatable. 

Total  Damping of Beam-Model System 

A typ ica l  sample of t he  data, 
as 'recorded, i s  shown i n  f igure 4 
t o  i l l u s t r a t e  the  re la t ive  magni- 
tudes of t he  beam and t o t a l  

recorded f o r  t he  30-square-inch 
rectangle mounted on the  t i p  of 
t he  low-frequency beam i s  pre- 
sented as a function of pressure 

9 2  damping. The t o t a l  damping 0 200 400 600 800 

Pressure. torr 

Figure 4.- Variation of t o t a l  damping with 
pressure. f = 3.8 cps. 
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and amplitude. The amplitudes r e fe r  t o  t h e  average deflection of the  center of 
t he  p la te  during the  damping measurement and correspond t o  the  beam t i p  deflec- 
t ions  shown i n  t h e  previous figure. 
increase i n  the  system damping with the  addition of t he  p la te .  For example, an 
increase i n  damping by a fac tor  of approximately f ive  i s  noted i n  the  high- 
pressure region. 
t o  the  values measured f o r  the  beam alone i n  t h e  low-pressure region. This 
condition indicates t h a t  no extraneous damping is. introduced in to  the  system 
with the addition of t he  p l a t e  and thus the  additional damping may be a t t r i b -  
uted t o  the  a i r  resistance.  

It i s  in te res t ing  t o  note the  s ignif icant  

A s  t h e  pressure i s  decreased, t h e  values of damping converge 

O I 2 r  

Amplitude, in. / 

Oo8t  

30 inp 0 

Pressure, tcfr 

( a )  30-square-inch disk.  

Amplitude, in 

,006 

J 

0 200 400 600 800 

Pressure. torr 

(b )  30-square-inch rectangle. 

Figure 5.- Variation of air damping with 
pressure. f = 3.8 cps. 
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A separate tes t  w a s  con- 
ducted t o  determine the  effect ,  
i f  any, of t he  b e l l  jar  on the  
damping. A 45-square-inch p la te  
w a s  attached t o  the beam (3.8 cps) 
and the  damping recorded of sev- 
e r a l  amplitudes a t  atmospheric 
pressure. The b e l l  jar w a s  then 
removed and the  t e s t  rerun. 
Since the  data obtained with and 
without the  b e l l  jar were essen- 
t i a l l y  identical ,  it was con- 
cluded t h a t  t h e  presence of t he  
b e l l  jar per se had no s igni f i -  
cant e f fec t  on the  damping of the  
models. 

Damping of Two-Dimensional Models 

Effect of pressure.- The 
dependency of the a i r  damping on 
the  pressure, and hence on the  
density of the  t e s t  medium, i s  
presented i n  f igure 5. The air  
damping, obtained by .subtracting 
the  beam damping from the  t o t a l  
damping at corresponding pres- 
sures and amplitudes, i s  shown 
f o r  the  30-square-inch p la tes  at  
3.8 cps. The damping fac tor  
exhibits a l i nea r  dependency on 
the  pressure throughout the  range 
examined. A strong dependency of 
t he  damping on the  amplitude of 
deflection i s  also noted and 
indicates t he  presence of a non- 
l i nea r  damping phenomena. Iden- 
t i c a l  trends were noted i n  the  



case of t he  15- and 
45-square-inch p la tes  and 
these resu l t s  a re  pre- 
sented i n  a subsequent 
section on shape i n  which 
a l l  t h e  data  are compared. 

EXf ec t  of amplitude. - 
The var ia t ion of damping 
with amplitude f o r  the  two 
30-square-inch configura- 
t ions  i s  presented i n  f ig-  
ure 6. The trends existing 
i n  these cases a re  again 
representative of t he  
results obtained f o r  t he  
other plates  studied at  
3.8 cps. 
amplitude examined, t h e  
damping i s  a near-linear 
function of p la te  deflec- 

For the  range of 

Pressure, torr 

I 2 3 4 .5 .6 

Amplitude, in. 

(a) 30-square-inch disk. 

Figure 6.- Variation of air damping with amplitude. 
f = 3.8 cps. 

t ion.  Because of t h i s  l i nea r  dependency, the damping i s  apparently of the  
velocity squared type as previously discussed. Thus, t he  resistance force i s  

1 proportional t o  the  dynamic pressure pu2 as would be found i n  the  case of a 

panel immersed i n  a steady stream of incompressible f lu id .  It should be noted 
t h a t  an extension of the fa i red  l i nes  w i l l  not in te rsec t  t he  origin.  It i s  
possible t h a t  i n  the  low-amplitude range, the  forces become viscous i n  nature 
and therefore the  amplitude dependency or slope of t he  curve i s  reduced. 

Effect of frequency.- The 
e f fec ts  of frequency on the  
damping-pre s sure - amplitude rela- 
t ionship observed i n  the  previous 
cases were examined by employing 
the  beam having a tuned frequency 
of 21.2 cps. The decrements are 
presented i n  figure 7 as a func- 
t i o n  of pressure and amplitude f o r  
t he  30-square-inch disk. Except 
i n  the  very low pressure region, 
the  damping i s  again a l i nea r  
function of pressure as shown i n  
f igure 7(a). 
s t i f fness ,  amplitudes comparable 
t o  those of t h e  low-frequency case 
could not be obtained with the  
solenoid. Consequently, t h e  e f fec t  
of amplitude on t h e  air damping w a s  
examined by removing the  b e l l  jar 
and displacing t h e  beam manually. 

Because of the  beam 

O ' O l  
Pressure. torr .do 

0 I 2 3 4 5 

Amplitude, in. 

(b) 30-square-inch rectangle. 

Figure 6.- Concluded. 



In  the  region of higher amplitudes, 
t h e  damping i s  again d i r ec t ly  pro- 
port ional  t o  displacement as shown 
i n  f igure 7(b). 
is  decreased, however, the  damping 
becomes less dependent upon ampli- 
tude as w a s  found i n  the  low- 
frequency case. 

A s  the  amplitude 

6- 
ro 

p 
2 4-  

5 
2 2 -  

u 

m 

ETfect of shape.- The e f f ec t s  Pressure, ton 

of p l a t e  shape were examined by com- 
paring the  damping fac tors  asso- 
ciated with the c i rcu lar  and rec- 

(a) Variation of air damping with pressure. 
Amplitude 0.44 in. 

measured over a wide range of pres- 
sure and amplitude while attached 
t o  the  beam of lower frequency, a r e  
summarized i n  f igure 8. 
decrement 6 i s  presented as a 
function of the parameter py/m 
where p i s  the density of the a i r  
within the chamber, y i s  the  
amplitude of the center of the  plate,  

The log 

I 

i s  a l i nea r  function of the  param- 
e t e r  py/m which i s  indicat ive of 
veloci ty  squared damping. For a 

Figure 7.- Variation of air damping with 
pressure and amplitude. f = 21.2 cps. 

given area, 6 = kpy/m where k i s  
the slope of the  curve associated 

with tha t  par t icu lar  area.  
p la tes  are  compared the  values of k 
a re  highly dependent upon the area. 

When the r e su l t s  f o r  the  c i rcu lar  and rectangular 
a re  seen t o  be independent of shape but 

Effect of area.- A detai led examination of the nonlinear dependency of 
the air  damping on p la te  area necessitated the  use of the additional p la tes  of 
surface areas between 1 2  and 39 square inches. 
t i o n  a re  shown i n  f igure 9. The measured decrement i s  presented as a function 
of p la te  area f o r  two par t icu lar  amplitudes at  each frequency. The functional 

dependency was found t o  be 6 = A , the  exponent 4/3 being determined from 
the  slopes of the  four curves. 
on area i s  greater  than t h a t  experienced by a s i m i l a r  p l a t e  i n  a steady flow 
f i e l d  but l e s s  than the relationship discussed i n  reference 6 f o r  sound 
radiation damping. 

The r e su l t s  of t h i s  examina- 

4/3 
It i s  in te res t ing  t o  note t h a t  the  dependency 

A2 

These resul ts ,  obtained at atmospheric pressure, a re  compared with a l l  
As previously the low-frequency da ta  previously summarized. 

found, the  decrement 6 i s  a l i n e a r  function of py/m f o r  a par t icu lar  area 
(See f i g .  8. ) 
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but t he  slope Gm/py did not 
vary d i r ec t ly  with area. Thus 
f o r  comparison purposes, all the 
low-frequency data  a re  presented 
i n  f igure 10 where the  param- 
e t e r  Gm/py i s  shown as a func- 
t i o n  of area. The atmospheric 
data  of figure 9 a re  represented 
by the  c i r c l e s  and the  data from 
f igure 8 (s lopes)  a re  shown by 
the  squares. The r e su l t s  indi- 
cate t h a t  the decrement 

pyA4'3 for a l l  the  low- 6 = 22 m 
frequency data. I n  the case of 
the  high-frequency data, the  
same relat ionship i s  adequate 
f o r  predicting the  damping f o r  
amplitudes greater  than 

~ O X I O - ~  

I 
Freswre. torr "1 0 760 

Area, in2 

o r /  45 

m 12 

" - 8  30 

B 
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g 
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0 4 8 12 16 2 0  24 28  3 2  xlO" 

PY, 1. 
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(a) Disks. 

Figure 8.- Variation of air damping with 
parameter py/m for pla tes .  

0.15 inch. 
amplitude and therefore cannot be represented by the  empirical relationship. 

Below 0.15 inch, the  damping ceases t o  be a l i n e a r  function of 

The application of the  relat ionship developed i n  the  previous section t o  
p la tes  of la rge  area was examined. 
inches (p l a t e  area minus area of beam overlay) were selected t o  provide an 
order-of-magnitude var ia t ion i n  s ize .  
pressure f o r  th ree  amplitudes a re  shown i n  f igure 11 and are seen t o  be i n  
excellent agreement with the empirical relationship.  Thus it appears t h a t  the 
relationship can be applied d i r ec t ly  t o  obtain the a i r  damping of p la tes  under 
conditions similar t o  those encountered i n  t h i s  investigation. In  more general 
cases, it appears t h a t  damping measurements under atmospheric conditions can 
be extrapolated by using the  functional relationship found t o  ex i s t  between the 
variables.  

P la te  areas of 71.3, 128, and 220 square 

The decrements measured a t  atmospheric 

Apparent mass effects . -  When 
the  e f f ec t s  of pressure environ- 
ment on the  vibratory response of 
a system are considered, fre- m 

quency considerations are a l so  of 
in te res t .  The vibratory object r 

experiences not only forces w h i c h  
oppose the  velocity (damping B L 

5 

F 
E 

:: 

a forces ) but also forces propor- 
t i o n a l  t o  the  acceleration which 
e f fec t ive ly  a l t e r  the  mass as 
discussed i n  reference 3. To 
examine the  importance of t h i s  
effect ,  frequencies were measured 
f o r  the 30-square-inch c i rcu lar  
plate,  while it w a s  attached t o  
both the  high- and low-frequency 

Preswre. ioTr 

0 760 
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0 0.040 
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(b) Rectangles, 

Figure 8. - Conclude&. 
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Figure 9.- Variation of air damping 

with area. 

Area, sq fi 

Figure 10.- Variation of 
parameter Gm/py with 
area. 

beams. 
t ab le  I1 as a function of pressure and 
amplitude. I n  the low-frequency case 
a very s l igh t  increase ( l e s s  than 
0.3 percent) i n  frequency was noted as 
the  pressure and hence apparent mass 
was decreased. No ef fec t  of pressure 
could be detected i n  the high-frequency 
case; thus, within the  scope of t h i s  
study apparent mass ef fec ts  are con- 
sidered t o  be negligible.  

The frequencies a re  shown i n  

I 

I 

Damping of Three-Dimensional Models 

Sphere.- The air  damping expe- 
rienced by the  sphere with a projected 
surface area of 30 square inches i s  
shown i n  f igure 12. The decrement, 
presented as a function of pressure 
and amplitude, i s  essent ia l ly  propor- 
t i o n a l t o  the  square root of the  pres- 
sure o r  density and i s  v i r tua l ly  inde- 
pendent of the amplitude. The 
independence of the  air  damping with 
amplitude i s  indicat ive of viscous 
dampihg forces as predicted by Lamb. 
( See r e f ,  3. ) 
theore t ica l ly  predicted viscous force 
would y ie ld  the  var ia t ion of damping 
with pressure shown by the dashed 

The magnitude of the  

curve; these resu l t s  a re  i n  very good agree- 
ment with the  experimental data. 
r e t i c a l  decrement 

The theo- 

m 

appears t o  be quite adequate f o r  the predic- 
t i o n  of the  damping. 

Cylinder.- Similar r e su l t s  obtained f o r  
the cylinder a re  shown i n  f igure 13 and a re  
compared with the theory of Stokes f o r  an 
i n f i n i t e  cylinder. Again, the decrement i s  
proportional t o  the  square root of the  den- 
s i t y  and i s  i n  excellent agreement with the 
theory i n  the  case of low amplitude. A t  
high amplitudes, however, a discrepancy of 

3.6 

h 



t he  damping with amplitude is  noted pos- 
s ib ly  because of end e f f ec t s  o r  p a r t i a l  
separation of the  flow. However, the  

I relationship 

50r 

> 
,9 

i s  probably adequate f o r  predicting the  

It should be noted t h a t  i n  the cases of 
the  sphere and cylinder, no var ia t ion of 
frequency with pressure was noted through- 

t damping i n  most engineering applications.  CQ 

l out the  pressure range examined. 

Experimental 
Theoretical 
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Figure 12.- Variation of air damping with 
pressure for the sphere. f = 3.8 cps. a 
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Figure 11.- Variation of param- 
eter Gm/py for large areas. 
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Figure 13.- Variation of air damping 
with pressure for the cylinder. 
f = 3.8 cps. 



CONCLUSIONS 

An investigation has been conducted t o  determine the  a i r  damping exhibited 
by r ig id  two- and three-dimensional shapes osc i l la t ing  i n  a pressure environ- 
ment ranging from 4 x 10-2 t o r r  t o  760 to r r .  
considered i n  t h i s  investigation, the  following conclusions are noted: 

Within the  range of variables 

1. For systems having a re la t ive ly  large r a t i o  of area t o  mass, t he  magni- 
tude of t he  a i r  damping may great ly  exceed the  damping a t t r ibu ted  t o  a l l  other 
sources. Values of air  damping, an order of magnitude greater  than t h e  struc- 
tural  damping, were observed i n  these t e s t s .  

2. The damping factors  associated with the  two-dimensional p la tes  exhibit 
a l i nea r  dependency on pressure and, except f o r  re la t ive ly  low amplitudes, a 
near-linear dependency on amplitude. Thus t h e  damping forces are apparently 
proportional t o  the  dynamic pressure. 

3. For t he  plates, t he  damping i s  independent of shape and var ies  with the  
4/3 power of t h e  area.  

4. The empirical relationship which best  describes the  dependency of the  
air  damping of t he  plates  on the  variables, air  density p, amplitude y, 

, where K i s  equal t o  22 i n  U.S. cus- pyA4I3 
m a rea  A, and mass m, i s  6 = K 

tomary uni t s .  u 

5. The damping fac tors  associated with the  sphere are essent ia l ly  propor- 
t i o n a l t o  the  square root of the  density, independent of t he  vibratory ampl i -  
tude, and i n  good agreement with available theory based on viscous damping 
forces . 

6. A t  low amplitudes the  cylinder exhibits damping factors  i n  excellent 
agreement with those predicted by viscous theory. 
damping exceeds theore t ica l  predictions - possibly because of end ef fec ts  or  
flow separation. 

A t  higher amplitudes the  

7. The response frequency i s  v i r tua l ly  unaffected by changes i n  pressure 
and amplitude; therefore, apparent mass ef fec ts  are considered t o  be negligible. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., December 9, 1964. 
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TABLE I.- INFORMATION PERTINEW TO MODELS AND TESTS CONDUCTED 

I I I Model description 

3 735 Circular plates ---- ---- 
I 

I D '  Rectangular plates 4 3 , ----- 
E l  I Rectangular p la tes ]  5 3 ----- 

R ~ r t . n n m i l a r  n l n t p c .  6 3 ----- v--- r----- - -. - - - I_ , 
Rectangular p l a t e s ,  7 3 ----- 
Rectangular plates 8.5 3 , ----- 

' F  

' H  
I 
J 

' K  

! G  k 2 - 1  

, L  
~i 

i_' 
N 

, o  
P 

Rectangular p l a t e s ,  
Rectangular plates 
Rectangular plates 
Rectangular plates 
Rectangular p l a t e s ,  

Rectangular plates 
Rectangular plates 

t, 
in. 

0.120 
.156 
.120 

.120 

.120 

.120 

.120 

.120 

.156 

.120 

.120 

.120 

.120 

12.5 7.5 ----- .250 
16 9.5 ----- .250 

I .. 

Cyllnder io ---_ 1.50 , .120 
i I 

I 

Projected 

15 1 Steel 
30 :Aluminum 
45 l~luminum 

12 ' Steel 
15 1 Steel 
18 Aluminum 

Test conditions 

CPS t o r r  

I 

4 x io-2 t o  760 \ 

4 x to 760: 
4 x 10-2 t o  760 
4 x t o  760, 

3.8 14 x t o  760 

4 x t o  7601 
3.8 and 21.2 

3.8 

3.8 and 21.2 
3.8 and 21.2 
3.8 and 21.2 

21 I Ahminun 3.8 and 21.2 
25.5 Aluminum 3.8 and 21.2 
30 cAh"m 13.8 and 21.2 

Muminum 3.8 and 21.~2 
36 Aluminum 3.8 and 21.2 

Aluminum 13.8 and 21,2 39 
45 iAh"num 3.8 and 21.2 

33 I 

4 x t o  760' 
4 x t o  760' 
4 x io-2 t o  760 
4 x 10-2 t o  760 
4 x t o  760 
4 x 10-2 t o  760 1 

4 x 10-2 t o  760 I 

93.8 Steel 3.8 I 760 
152.0 Steel 3.8 760 
24 0 Aluminum 3.8 760 

30 Plas t ic  3.8 4 x t o  760 

, I I 

30 Plas t ic  I 3.8 ~ 4 x t o  760 



Configuration 
189 torr 

30 in. 0 
0.04 torr 

TABLE 11.- EFFECT OF PRESSURE ON FREQUENCY 

3 - 770 
3.770 

3 770 

3.771 

Amplitude 

3 771 

3 771 

3 772 

3 * 772 

0.514 

- 323 
.181 

.io3 

21.17 

21.28 

21.26 

21.20 

0.024 

.014 

.010 

.008 

20 99 

21.21 

21.15 

21.26 

Frequencies for pressures of - 

3 767 

3.763 

3.763 

3.764 

3 767 

3.7@ 

3.768 

3.768 

21.23 

21.23 

21.29 

21.29 

21.20 

21. 29 

21.22 

21.26 
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